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ABSTRACT 

We prove inequalities which give lower bounds for the Lebesgue measures of 
sets E + K where K is a certain kind of Cantor set. For example, if C is the 
Cantor middle-thirds subset of the circle group T, lhen 

m(E)'-'""-"°~ <= m(E + C) 

for every Borel E _C T. 

Two of the attributes of a locally compact abelian group G are its Haar  

measure rn and its addition operation. An aspect of the relationship between 

these is the behavior of the Haar  measure of sets which are sums. The objects of 

study in [3] were certain inequalities of the form 

(1) 6m(E)  ~ <-_ m(E  + K)  

holding for some measurable K C G  such that r e ( K ) = 0 ,  some 6 > 0  and 

a E(0 ,1)  depending on K, and all measurable E C_ G for which E + K  = 

{e + k :e E E, k E K} is measurable. The particular instances of (1) which 

furnished the motivation for [3] had G - - R "  and K a suitable k-dimensional 

surface in R" (1 _-< k < n). Here  we consider inequalities (1) which hold when G 

is the circle group T and when K is a Cantor-like set. This paper is organized as 

follows. In §1 some conditions are given which are equivalent to the existence of 

an inequality (1). These have a certain intrinsic interest, and one of them is 

necessary for our later work. The result of §2 is a sufficient condition for certain 

generalized Cantor sets K to satisfy (1). It follows easily from this theorem that if 

C is the Cantor middle-thirds set, then 

(2) rn(E)~ ~iogz/iog3)___ m ( E  + C) 
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for every Borel E C T. In §3 we establish inequalities similar to (2) but with C 

replaced by certain of its subsets. We also comment on an interesting related 

inequality of Brown and Moran. 

§1. Let G be a locally compact abelian group with Haar measure m. Denote 

by C + the space of nonnegative continuous functions of compact support on G. 

For f E C~ + and p E (0,~), let 

( fG \ i/p Ilfllp = Ill"din) . 

THEOREM 1. Suppose K is a compact subset of G and 0 <  a < 1. The 

following are equivalent: 
(a) there is ,5 > 0  such that ~m(E) ~ <= m(E + K) for all compact E C_ G; 

(b) there is M > 0 such that m(J")kEr(F-k))<= Mm(F) "~ for all compact 

FC_G; 
(c) there is ~ > 0 such that for all f E C[ 

_<- f~ sup{f(x - k): k ~ K}dm(x);  uufun,,  

(d) there is M > 0 such that for all g ~ C+~ 

fc inf{g(x + k E Mllgllo. k): K}dm(x)  < 

PROOF. To prove that (a) implies (b), let E = I"Ik~K(F-- k). Then E + K C_ 

F, so if 6 is as in (a) we can take M = 8 -'/~ in (b). The proof that (b) implies (a) is 

similar. 

To prove that (c) implies (d), let f ( x )=  inf{g(x + k)a:k  E K}. Then f E C~ + 

because of the uniform continuity of g and the compactness of K, and 

sup{f(x - k): k E K} <= g(x)L Thus if 6 is as in (c) we can take M = ~ - ' "  in (d). 

The proof that (d) implies (c) is similar. 

That (c) implies (a) would be obvious if we could take f in (c) to be the 

indicator function Xz. It can be proved by approximating XE with f E C~ +. 

To show that (a) implies (c), put h (x) = sup{f(x - k): k E K}. Then for s > 0 

we have 

{ f >  s}+ K C{h > s}. 

Write A(f , s )=  re{f> s} and define A(h,s) similarly. Since (a) must hold also 

when E is open, 

~ ( f , s )  ° < - _ , ~ ( h , s ) .  
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Now 

That  is, 

Ill Illlz = ~- '  f=  s"-="~x q, s)ds 

<_ (6-~/"la ) ~f sCt-~)/~a (h,s )'/~ds 

= (8-"~/a )  f f  A (h, s)[sX (h, s)l°-"V"ds 

<-- (8-"°/, ~)11 h I1~ '-o'o f f  x (h, s)ds 

= (~ "°/o,)11 h I1', 'o. 

~,,," Ilfll,,,, =< f~, sup{f(x - k): k ~ K}dm(x). 

§2. Fix a positive integer n ->3  and let G ( n ) = { 0 , 1  . . . . .  n - I } .  We will 

interpret G(n)  at times as a set of integers and at times as a realization of the 

group of integers modulo n, but the appropriate interpretation will be clear from 

the context. Fix a subset S C_ G(n)  such that 0 E S and consider the generalized 

Cantor set K C_ [0,1] consisting of all sums ET=~ sin -j such that each sj E S. (Thus 

if n = 3 and S = {0,2}, K is the Cantor middle-thirds set, which we will denote by 

C in the sequel . )The normalized counting measure on G(n)wi l l  be denoted by 

m,, while m will henceforth stand for Lebesgue measure on [0,1). We take [0, 1) 

with addition modulo one as a model for T and regard the Cantor sets K as 

compact subsets of T by identifying 0 and 1 if necessary. We will prove the 

following theorem. 

THEOREM 2. Fix d E ( 0 , 1 ) .  Suppose that for every subset EC_G(n)  the 

following inequality holds (where E + S is computed in the group G(n)) :  

(3) 

Then the inequality 

(4) 

holds for every Borel E C_ T. 

m . (E )  ~ <= m. (E  + S). 

re(E) ~ <= m(E  + K)  

COROLLARY. If E is a Borel subset of T, then (2) holds. 
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PROOF OF COROLLARY. Taking a = 1 - log2/log 3, n = 3, and S = {0,2} in 

Theorem 2, we must check that (3) holds. If card(E) = 2 or 3, then the right hand 

side of (3) is 1, and so (3) is true: If ca rd (E)=  1, then (3) is the equality 

(1)  l-'°~'''°g' 2 
3" 

We would like to prove Theorem 2 by iterating some elementary inequality. 

This general strategy has been successful in the past - -  see [2]. The obvious 

inequality to try is (3), but an attempt to do so shows that the inequality actually 

needed here is 

(5) IlfllL"°'~"'--< ~a sup{/(x - s): s E S } d m , ( x )  
(n) 

for [ => 0 on G(n) .  Now (3) and (5) are, respectively, (a) and (c) of Theorem 1 

with G = G(n),  K = S, and 6 = 1. Unfortunately, if 6 = 1 in (a) then Theorem 1 

yields only 6 = a ~ in (c). But repeated iteration requires 8 = 1 in (c). Thus the 

proof of Theorem 2 will be in two parts. The first will be a proof that (3) does 

imply (5) and the second will be the iteration of (5). (Inequality (5) will be proved 

by the iteration of (3), but an auxiliary group is involved.) 

LEMMA. Fix a ~ (0, 1). For i = 1,2 suppose that G, is a locally compact abelian 

group with Haar measure mi and that K~ is a compact subset of G~ satis[ying 

m,(E,)" - m,(E, + K,) 

for each compact E, C G. Then i [G  = G~ x Gz. rh = m, x m._. and t(  = K~ x K._, 

we have 

rh(E) ~ <-_ ffz(E + I()  

for every compact E C_ (~. 

PROOF. For a subset E of (~, we will write x ( E ; x , y )  for the value of the 

indicator function of E at the point (x,y). Now 

tfi(E)~ = [fo,  m 2 { y : ( x , y ) E E } d m ~ ( x ) ]  ~ 

<= m z ( { y : ( x , y ) E E } +  2) am~(x)] 

= [f~,  [f6.. X ( E + { 0 } x  K2;x,y)~m2(y)] ' /~dm,(x)]  ~ 
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<= x(E + {0} x K2;x, y)dm~(x drn2(y) 
2 I 

f m~{x : ( x , y ) E E  + { 0 } x  K2}°dm2(y) 
J O  2 

< ~ m~({x :(x, y)  E E + {0} x K2} + K1)dm2(y) 
J G  2 

= fo,_ ml{x: (x ,y )EE + K}dm2(y) 

= rh(E + K). 

PROOFOF (5). For  J = 1,2 . . . .  define G j and S ~ to be, respect ively,  the J - fo ld  

Car tes ian  p roduc t s  FI]~, G(n) and FI]=I S. Put  G ~ = FIT=j G(n) and S ~ = I17=1S. 

Let  m J and m s be  the normal ized  H a a r  measures  on G ~ and G ~. Then  r epea t ed  

appl icat ions  of (3) and the l e m m a  show that  

rnJ (E) ~ <= rnJ (E + S J) 

for  J = 1,2 . . . .  and E C_ G J. The  Fub in i - Jes sen  t h e o r e m  then yields 

m~(Ey <= m~(E + S ~) 

for  any c o m p a c t  E C G ~. It  follows f rom T h e o r e m  1 that  there  is some  8 > 0 

such that  for  p = 1/a 

(6) ,5 Ilg IlL",c ~, < fo~ sup{g(x - s ) :  s u s~}am~(x) 

holds for  all nonnega t ive  con t inuous  g on G ~. If (5) failed there  would be a 

nonnega t ive  [ (not identically zero)  on G(n) such that  

fo , . ,  sup{/(x  s) :  s ~ S}dm,(x)= (1 - 

for  some  e E (0,1). Then  for  J so large that  (1 - e )  j < 8 the funct ion g def ined 

on G ~ by 

./ 

g(x,,x2 .... ) =  l-If(x,) 
j = l  

would violate  (6). 

PROOF OF THEOREM 2 (complet ion) .  For  J = l , 2  . . . .  let Gj=G(n~)  = 
{0,1 . . . . .  n ~ - 1}. For  the pu rposes  of  this p roo f  wri te  mr for  normal ized  count ing  
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measure  on G~. Let  

{" / S,= ~s/nJ:s~S C_G,. 
i=O 

Writing p for 1/a we will begin by using induction on J to establish the following 

inequali ty:  

(7) Itftl:(~,) --< fc,  sup{f(x - s ) : s  ~ S~}dmj(x) 

for  f _-> 0 on Gj. (The values of expressions like x - s appear ing as a rguments  for  

funct ions defined on a group - -  here  Gj - -  are to be computed  in the group.)  For  

J = 1 inequali ty (7) is just (5). So assume that  (7) holds with J replaced by J - 1 

and fix a nonnegat ive  funct ion f on Gj. For  j = 0,1 . . . . .  n - 1 define/~ on Gj_~ by 

~(x)  = f( j  + nx). For  an integer  x let ]x[  deno te  the j E {0,1 . . . . .  n - 1} such that  

j --- x (rood n). Then  

II / l l : ,~ , ,  = ~Z,=, ,  . =  

by (5). By (7) for  J -  1 this last expression is not grea ter  than 

- '  I -g f sup fli-~t _ _ < 1  sup{fli_~i(x - g): s E S, g E S~_,}dm,_,(x). 
r t  ]=3J 11 s ~ : ;  I P(G~_j) Yl i=O J G ~  i 

Since 

f , . ~ , ( x  - ~ )  = f ( /  + n x  - (s + n~)) .  

the last sum is the right hand side of (7). Next  let Hj = n-JG~, let Kj = n-JSj, and 

regard Hj as a subgroup of T. We will now use mr to deno te  normal ized 

count ing measure  on Hr. Then  

K I C K 2 C . . . C _ K  

and K is the closure of [,.J~=, Kj in T. If f _-> 0 is a cont inuous  function on T, then 

lltll,.,,.,,-~ II:II,.,.,. 
Since 

sup{/(x - k ) :  k E Kj}-..~sup{f(x - k) :  k E K} 

uniformly in x, we also have 

/ , ,  sup{f(x - k ): k e Kj}dm,(x)-~ /T sup{t(x - k ): k e K}dm(x) .  



Vol. 55, 1986 SUMS OF SETS 311 

Thus (7) implies 

[[fllLP'r'--< fT sup{f(x - k):  k E g }dm(x )  

for nonnegative continuous f on T. Now (4) follows as in the proof of Theorem 1. 

§3. Let A be the Cantor-Lebesgue measure on the Cantor middle-thirds set C 

and write Y for log2/log3. Brown and Moran [1] proved the following 

inequality: 

(8) A(K)I/'2v'A(E)'/(2"'<~ m(E + K) 

for every pair of Borel sets E, K C_ (7. Their proof is based on a geometric result 

of Woodall [4] which is obtained by iteration of a certain elementary inequality. 

We will iterate the same inequality in a different way to obtain Theorem 3(a) 

below - -  a result which is related to (8) as (c) of Theorem 1 is related to (a) of 

Theorem 1. In Theorem 3(b) we will obtain an analogous result which implies 

that 

(9) A(K)m(E) ' -"  < m ( E  + K)  

for Borel sets K C_ C, E C_ T. (The equations 

1 1 
y "~--~+ y "~-~ = 1, 7 . 1 + 1 . ( 1 - y ) = 1  

together with the facts that the dimension of A is 3' and the dimension of m is 1 

hint that something more general may be true here.) To state Theorem 3 we 

need a definition. 

DEFINITION. If f and g are nonnegative functions on a group G, the function 

f # g  is defined by 

f # g ( x )  = sup{f(y)g(x - y): y E G}. 

Recall that for p E [1,oo), [I/lip denotes the norm of a suitable function f in 
L~(m). 

THEOREM 3. (a) If f and g are continuous nonnegative functions on C 

(regarded as functions on T supported on C), then 

(lO) 

(b) If f is as in 

(ll) 

(a) and g E C+,, then 

II f IIL',,,II g I1,,,,-,, Ilf#• II,. 
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REMARK. It does not seem possible to deduce an inequality like (10) (or (11)) 

from (8) (or (9)) in a manner similar to the proof that (a) implies (c) in Theorem 

1. 

PROOF OF (a). For J = 1,2 . . . .  let Gj = G(3J )={0 ,1  . . . . .  3 ~ - 1 }  and let mj be 

normalized counting measure on Gj. Let C~ = {E]£o ~ c y  : cj = 0,2}, and let Aj be 

normalized counting measure on Cj. The proof is similar to the proof of 

Theorem 2 after (5) was established. In particular, the crucial point is proving, 

for J = 1,2 .. . . .  the inequality 

(12) II/11, g fo. F#gdmj 
for nonnegative f and g on Gj with support in Cj. Given (12) a limit argument 

(very like that in the conclusion of the proof of Theorem 2) yields (10). Thus only 

(12) will be proved here. For J = 1 (12) is equivalent to the Lemma from [4]. So 

assume that (12) holds for J -  1 and le t / ,  g be nonnegative functions supported 

in C~. For j = 0,1,2 let ~ be defined on Gj_, by )~(x) = [( j  +3x) .  Then f, and f2 
are supported on Cj_, and ft is zero. For an integer x, let ]x[ be the j E {0,1,2} 

for which j = x (rood 3). Then 

1 -' 
-<_ ~ ~ sup life ILL-',,', ,,11 

J x ~ ( I  c E C I  

by (12) for J = 1. By (12) for J -  1 this is not greater than 

f x~,,c~c, j~,-, sup{/~ (e)glx-~(i  - e):  e E Cj_,}dmj_l(~) 

= 5  sup{/(c + 3~)g(x + 3~ - (c + 3e)): c ~ C,, e ~ G-,}dmj- ,(~) .  
, / - 1  

The last term is the right hand side of (12). 

PROOF OF (b). With notation as in the proof of (a) it is not surprising that the 

heart of the proof is the inequality (for Y = 1,2 . . . .  ) 

(13) II[ll~,,,,llglk,,,,-,,,~,,<= fa, f#gdm~ 
for nonnegative jr and g on G~ with jr supported on C~. The inductive step is 

quite similar to the analogous part of the proof of (12). Thus we will give only the 
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proof  of  (13) for  J = 1. Le t / 3  = 1 - y. Af t e r  cancell ing the normal iz ing  cons tants  

for  the measu re s  and then  scaling so that  the left hand  side of  (13) is 1, (13) for  

J = 1 is the inequal i ty  

(14) 1 - max{aot, a d l  - t)} + max{a,  t, a2(1 - t)} + max{a2t, a0(1 - t)} 

for  0 <= t <= 1 and al >= 0 satisfying 

1 /8  l i e  a ~ / ~ + a l  + a 2  = 1 .  

By cont inui ty  it is enough  to p rove  (14) when  each  ai is strictly posit ive.  The  right 

hand side of  (14) defines a funct ion h ( t )  on [0,1] such that  

h ( 0 ) =  h ( 1 ) =  a o +  a~ + a 2 _  -> 1. 

Let  t, = a,/(a, ,+ a,), t2 = a2/(a, + a2), and t3 = a,,/(ao+ a2). T h e n  t, is def ined by 

the equa t ion  aot, = a,(1 - tl), and t2 and t3 arise similarly. It is enough  to show 

that  h(ti)>= 1 for  i =  1,2,3. Now h(t,)>= 1 follows f rom the inequal i ty  

a,,al + max{a,,a2, a~} + max{a~, a, a2} ->- a,, + a,  

(15) I//3 -4- , / /3 _ wheneve r  a~ - 0  satisfy a~/~+ a ,  - a2 - 1, 

and h ( h ) = > l ,  h(t3) >- 1 also follow f rom (15) by pe rmu t ing  the a,. Wri t ing 

b~ = a l  ~8 t r ans fo rms  (15) into 

(bob,)8 + [max{bob2, b2}] ~ + [max{b~, b, b2}] ~ _--- b~ + b 

(16) wheneve r  bo + b, + b2 = 1, b~ => 0. 

Pa ramet r i z ing  this inequal i ty  by c = b2, 8(1 - c)  = b,, (1 - 8)(1 - c)  = b,, and 

cancell ing a fac tor  of  ( 1 -  c)  8 show that  it is enough  to p rove  that  

[8(1 - 8)(1 - c)] 8 + [max{(1 - 6)c, 62(1 - c)}] ~ + 

(17) [max{(1 - 6)2(1 - c),  6c}] 8 - (1 - 6) 8 - 6 ~ _-> 0 

for  0 <= c =< 1, 0 =  < 6 =2.< -~ (The interval  0 = < 8 =< ½ suffices because  (16) is s y m m e t r i c  

in bo and bt.) T h e  left hand  side of  (17) defines a funct ion [ , ( c )  on [0,1]. This  

funct ion is d i t terent iable  on (0,1) except  at the points  c, = c , (6)  and c2 = c2(6) 

def ined by the equat ions  

(1 - ~)c,  = 62(1 - c,), (1 - 6)2(1 - c2) = 6c2. 

S i n c e / , ( 1 )  = 0 and 

~c2f,(c) <-O on ( 0 , 1 ) -  {c,, cz}, 
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it is enough  to show that  

(18) fs(O) = O, O =  < 8 =½, 

(19) fs(c,), fs(c2)>=O, 0 < 8 < ½ .  

To  establish (18) put  

Then  

Also 

g(t) = it(1 - t)] ° + t 2~ + (1 - t) 2~ - (1 - t)" - t °. 

g(0) = 0, g(½) = 3- 2 -2° - 2 ' -°  > 0. 

Isr. J. Math. 

g"( t )  =</3 (1 - / 3 ) [ ( 1  - t)~-2(1 - t a ) +  t°-2(1 - ( 1  - t) ° ) ] -  2/32(1 - t) ~- '  t ~- ' .  

Using the inequali t ies  

1 - t ° _ -< /3 (1  - t ) t  a - ' ,  1 - (1  - t )  ° -</3t(1 - t )  ~ - '  

one  sees that  this last express ion is nonposi t ive.  Thus  g(t) >= 0 for  0_-< t _-< 1/2. 

Since f , ( 0 ) =  g(8) ,  (18) is t rue.  

W e  turn to (19). Now 

c ,  = 8 2 / ( 1  - 8 + 8 2 ) ,  c2 = (1 - 8 ) 2 / ( 1  - 8 + 8 2 ) .  

Since 0 < 8 < 1/2, it follows that  0 < c~ -< c2 -< 1. Also 

8 2 ( 1 -  c)_--- ( 1 -  8)c if and only if c~ =< c, 

8 c < ( 1 - 8 ) 2 ( 1 - c )  if and only if c < c2. 

Using these  facts one  sees that  f8(cl)=[~(c2) and that  this n u m b e r  will be  

nonnega t ive  if and only if 

(20) [6(1 - 8)2] ° + [82(1 - 8)] 8 + (1 - 8) 3~ - (1 - 8 + 62)°[(1 - 8) ° + 8 ° ] => 0. 

Wri te  k ( 8 )  for  the left hand  side of (20). T h e n  

k (0) = k (½) -- 0. 

Thus  it is enough  to check tha t  k"(t)<O for  0 <  t <½. Now k"(t) is natural ly  a 

sum of several  te rms,  and  showing that  k"( t )  -<_ 0 is s imply a ma t t e r  of  pair ing off 

cer ta in  of  these terms.  This is e l emen ta ry  but  tedious.  H e r e  are  the details.  W e  

can write 
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6 

k " ( t )  = ~ k , ( t )  
.i=1 

w h e r e  

k , ( t )  = [3([3 - 1)t~-2(1 - t)  2t3 + ( - -4132t~- ' ) (1  - t)2t3-1 + 2[3(2[3 - 1)(1 - t ) 2 ~ - 2 t  a 

= k t , ( t )+  k ~ ( t ) +  k3(t) ,  

k 2 ( t )  = [3 ( [3  - 1)(1 - t ) t 3 -2 t  2~ + ( - 4 1 3 2 t 2 t 3 - ' ) ( l  - t )  t3- '  + 2[3(2[3 - 1 ) t 2 ~ - 2 ( 1  - t )  ~ 

= ktz(t) + k2~(t) + k3(t) ,  

k3(t) = 3[3(3[3 - 1)(1 - t) 3°-z, 

k4( t)  = - (1 - t + t2)~ [[3(fl - 1)(1 - t)~--" + [3(/3 - 1)t"-2], 

ks( t )  = - 213(1 - t + t2)~- ' (2t  - 1)[ - [3(1 - t)~-~ + [3t#-~], 

k6(t)  = - [f l( f l  - 1)(1 - t + t2)~-2(2t - 1) 2 + 213(1 - t + t2) ~- ' ]  [(1 - t)  ~ + t ~ ]. 

Recal l  tha t  [3 = 1 -  31. T h e n  the  first b r a c k e t e d  f ac to r  in k6(t)  can be wr i t t en  

[ 3 ( 1 -  t + t2)~-' [ 2 - ~ / ( 4  t 2 _  3 ) ]  
t + l  " 

< !  This  is posi t ive  for  0 =< t = 2, and  so  k~(t)  <= 0 for  those  t. O f  the  r e m a i n i n g  terms,  

the  k{ (i = 1,2;  j = 1 ,2 ,3)  are  nega t ive  whi le  k3, k4, and  ks are  pos i t ive  on  the  

interval  of  in teres t .  O n e  can  c h e c k  that  

k~(t)<=lk~(t) l  

a n d  tha t  

ks( t )  <-- 2132(1 - t + t2)~-'(1 - 2 t ) t  ~-' < 2132(1 - t)2t3-2(1 - 2 t ) t  ~-' <- ½1 k~(t)l 

for  0_-< t _-< ½. Us ing  the  inequal i t ies  

( 1 - t + t 2 ) ~ - t 2 ~ < _ [ 3 ( 1 - t ) t  2~-2, ( 1 - t + t 2 ) ~ - ( 1 - t ) ~ < [ 3 t ( 1 - t )  "-~-'- 

one  sees  tha t  

k , ( t )  + k ' , ( t )+  k~( t )  < [32(1 - [3)[(1 - t )a- ' t2~-2+ t~- ' (1  - t) 2~-21 

on  [0,½]. N o w ,  for  these  va lues  of  t, 

= 3 [ 3 2 ( 1 - f l ) t ~ - t ( 1 - t ) z ~ - 2 < ½ 1 k ~ ( t ) l  , /3z(1 - [3)tz~-2(1 - t)  ~ ' < Jk2(t)l .  

T h u s  k " ( t )  < 0 for  0 < t < ½ and  the  p r o o f  of  T h e o r e m  3 is c o m p l e t e .  
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