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ABSTRACT

We prove inequalities which give lower bounds for the Lebesgue measures of
sets E + K where K is a certain kind of Cantor set. For example, if C is the
Cantor middle-thirds subset of the circle group T, then

m(E)l-lngJ/mgag m(E + C)
for every Borel ECT.

Two of the attributes of a locally compact abelian group G are its Haar
measure m and its addition operation. An aspect of the relationship between
these is the behavior of the Haar measure of sets which are sums. The objects of
study in [3] were certain inequalities of the form

) sm(E)* = m(E +K)

holding for some measurable K C G such that m(K)}=0, some 8§ >0 and
a €(0,1) depending on K, and all measurable EC G for which E+ K =
{e +k:e € E, k € K} is measurable. The particular instances of (1) which
furnished the motivation for [3] had G =R" and K a suitable k-dimensional
surface in R" (1 = k < n). Here we consider inequalities (1) which hold when G
is the circle group T and when K is a Cantor-like set. This paper is organized as
follows. In §1 some conditions are given which are equivalent to the existence of
an inequality (1). These have a certain intrinsic interest, and one of them is
necessary for our later work. The result of §2 is a sufficient condition for certain
generalized Cantor sets K to satisfy (1). It follows easily from this theorem that if
C is the Cantor middie-thirds set, then

(2) m (E)lf(logZIIogB) g m (E + C)
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for every Borel E CT. In §3 we establish inequalities similar to (2) but with C
replaced by certain of its subsets. We also comment on an interesting related
inequality of Brown and Moran.

§1. Let G be a locally compact abelian group with Haar measure m. Denote
by C: the space of nonnegative continuous functions of compact support on G.
For f€ C; and p € (0,%), let

I, = ([ 17pam)”

THEOREM 1. Suppose K is a compact subset of G and 0<a <1. The
following are equivalent:

(a) there is 8 >0 such that 8m(E)* = m(E + K) for all compact E C G;

(b) there is M >0 such that m(Myex(F — k))<= Mm(F)" for all compact
FCG;

(c) there is 8 >0 such that for all f€ C!

Bllfle = [ suplftax = k):k € Kydm(x);
(d) there is M >0 such that for all g € C;
j inf{g(x + k): k € K}dm(x)= M g |l
G

Proor. To prove that (a) implies (b), let E = Nyiex(F—k). Then E+ K C
F, so if & is as in (a) we can take M = 8" in (b). The proof that (b) implies (a) is
similar.

To prove that (c) implies (d), let f(x)=inf{g(x + k)*:k € K}. Then f€ C!
because of the uniform continuity of g and the compactness of K, and
sup{f(x — k):k € K} = g(x)*. Thus if 8 is as in (c) we can take M = 5" in (d).
The proof that (d) implies (c) is similar.

That (c) implies (a) would be obvious if we could take f in (c) to be the
indicator function ye. It can be proved by approximating xe with f&€ C..

To show that (a) implies (c), put h(x)=sup{f(x — k): k € K}. Then for s >0
we have

{f>st+KC{h>s}h

Write A(f,s)= m{f > s} and define A(h,s) similarly. Since (a) must hold also
when E is open,

SA(f,s)" = A(h,s).
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Now
Ifliie=a™ fs“‘“”")« (f,5)ds
= (5_'/"/a)ﬁ)w sV X (h,s)"*ds
=(8""Ia) Lw A(h, s)[sA(h,s)]" " *"ds
= ")k ||(|"“”“[)x)\(h,s)ds
= (6 el
That is,

da* || fll. = L sup{f(x —k):k € K}dm(x).

§2. Fix a positive integer n =3 and let G(n)={0,1,....,n —1}. We will
interpret G(n) at times as a set of integers and at times as a realization of the
group of integers modulo n, but the appropriate interpretation will be clear from
the context. Fix a subset § C G(n) such that 0 € § and consider the generalized
Cantor set K C [0,1] consisting of all sums =_, s;n ’ such that each s; € S. (Thus
if n =3and § ={0,2}, K is the Cantor middle-thirds set, which we will denote by
C in the sequel.) The normalized counting measure on G(n) will be denoted by
m,, while m will henceforth stand for Lebesgue measure on [0, 1). We take [0,1)
with addition modulo one as a model for T and regard the Cantor sets K as
compact subsets of T by identifying 0 and 1 if necessary. We will prove the
following theorem.

THEOREM 2. Fix a €(0,1). Suppose that for every subset EC G(n) the
following inequality holds (where E + S is computed in the group G(n)):

3) m,(E)* =m,(E +8).
Then the inequality
4) m(E)* = m(E + K)

holds for every Borel ECT.

CoroLLARY. If E is a Borel subset of T, then (2) holds.
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PROOF OF COROLLARY. Taking a =1—log2/log3, n =3, and S ={0,2} in
Theorem 2, we must check that (3) holds. If card(E) = 2 or 3, then the right hand
side of (3) is 1, and so (3) is true: If card(E) =1, then (3) is the equality

(l) 1—-log/log3 _ g
3 T3

We would like to prove Theorem 2 by iterating some elementary inequality.
This general strategy has been successful in the past — see [2]. The obvious
inequality to try is (3), but an attempt to do so shows that the inequality actually
needed here is

) IflleveGn= Lm sup{f(x —s):s € S}dm, (x)

for f=0 on G(n). Now (3) and (5) are, respectively, (a) and (c) of Theorem 1
with G = G(n), K = S, and 8 = 1. Unfortunately, if § = 1 in (a) then Theorem 1
yields only 8§ = &® in (c). But repeated iteration requires 8 =1 in (c). Thus the
proof of Theorem 2 will be in two parts. The first will be a proof that (3) does
imply (5) and the second will be the iteration of (5). (Inequality (5) will be proved
by the iteration of (3), but an auxiliary group is involved.)

LEmMMA. Fix a € (0,1). Fori = 1,2 suppose that G; is a locally compact abelian
group with Haar measure m; and that K; is a compact subset of G; satisfying

m(E) = m(E +K,)

for each compact E. CG.. Then if G = G, X G, i = m, X m., and K = K, X K,
we have

m(E)" = m(E + K)
for every compact E C G.

ProoF. For a subset E of G, we will write x(E;x,y) for the value of the
indicator function of E at the point (x,y). Now

AEY = | [ midy:yye Eyamix)|

A

;Ll m-({y:(x,y)E E}+ K:)”"dm.(x)]ﬂ

=[[ []. x®+0xKsxydms)] “amio)]|



Vol. 55, 1986 SUMS OF SETS 309

gIG’ [J’G X(E+{O}xK:;X,y)dml(X)]admz(y)
= f mfx:(x,y) € E +{0} X K;}"dm;(y)
é[ mi({x :(x,y) € E +{0} X K} + Ki)dma(y)

=j mi{x:(x,y)€ E + K}dmy(y)

= m(E + K).

ProOOFOE(5). For J=1,2,... define G’ and §’ to be, respectively, the J-fold
Cartesian products IT., G(n) and I, S. Put G* =1I}., G(n) and $™=1I}_, S.
Let m’ and m”™ be the normalized Haar measures on G’ and G™. Then repeated
applications of (3) and the lemma show that

m’(E) =m’(E+S’)
for J=1,2,... and E C G’. The Fubini-Jessen theorem then yields
m*(E) =m™(E+S7)

for any compact E C G™. It follows from Theorem 1 that there is some § >0
such that for p =1/

©6) 8llgllircm = L* sup{g(x —s):5s € S7}dm™(x)

holds for all nonnegative continuous g on G~ If (5) failed there would be a
nonnegative f (not identically zero) on G(n) such that

[ suptf(x = s):s € Shama(x) = (1= )l v

for some & €(0,1). Then for J so large that (1 — &)’ < § the function g defined
on G by

g(x:,xz,.-~)=ll:!f(xi)

would violate (6).

Proor oF THEOREM 2 (completion). For J=1,2,... let G,=G(n’)=
{0,1,...,n” — 1}. For the purposes of this proof write m, for normalized counting
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measure on G;. Let
J-1 .
S] ={Es,n’:si€S](;GJ.
=0

Writing p for 1/a we will begin by using induction on J to establish the following
inequality:

™ Ifllerc,= LI sup{f(x —5):s € S;}dm,(x)

for f 2 0 on G,. (The values of expressions like x — s appearing as arguments for
functions defined on a group — here G, — are to be computed in the group.) For
J =1 inequality (7) is just (5). So assume that (7) holds with J replaced by J —1
and fix a nonnegative function f on G,. For j =0,1,...,n — 1 define f; on G,_, by
fi(x)=f(j + nx). For an integer x let }x[ denote the j €{0,1,...,n — 1} such that
j=x(mod n). Then

n—1

1 n-1 _ 1p 1 .
"f”u«cn = (; 2‘) "f: "i”(cl-n) 5; 2 SUP{"f],'—.s-|||:,"<a,,.): s € S}
e

i=0

by (5). By (7) for J —1 this last expression is not greater than

In—l
WA

Since

sup f);

sES

1 n-1 » _ B
=15 suplfya(x-9):s€8,5€S, ddmy (o)
LP(Gs-y) B i<t Ja,-

fii-a(x = §) = f(j + nx = (s + ng)),

the last sum is the right hand side of (7). Next let H, = n”'G,, let K, = n™’S,, and
regard H, as a subgroup of T. We will now use m, to denote normalized
counting measure on H;. Then

KiCK,C---CK
and K is the closure of U_, K, in T. If f 2 0is a continuous function on T, then

"f”l."mn—l’ ||f”l."m-

Since
sup{f(x — k): k € K,}->sup{f(x — k): k € K}

uniformly in x, we also have

j sup{f(x —k):k € K,}dm,(x)—'>L sup{f(x — k): k € K}dm(x).
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Thus (7) implies
”f”unnéfT sup{f(x —k):k € K}dm(x)

for nonnegative continuous f on T. Now (4) follows as in the proof of Theorem 1.

§3. Let A be the Cantor-Lebesgue measure on the Cantor middle-thirds set C
and write y for log2/log3. Brown and Moran (1] proved the following
inequality:

(8) A(K)"*PA(E)"®" < m(E + K)

for every pair of Borel sets E, K C C. Their proof is based on a geometric result
of Woodall [4] which is obtained by iteration of a certain elementary inequality.
We will iterate the same inequality in a different way to obtain Theorem 3(a)
below — a result which is related to (8) as (c¢) of Theorem 1 is related to (a) of
Theorem 1. In Theorem 3(b) we will obtain an analogous result which implies
that

©) AK)m(E) " =m(E +K)
for Borel sets K C C, E CT. (The equations
| L 1+1-(1—y)=1

together with the facts that the dimension of A is y and the dimension of m is 1
hint that something more general may be true here.) To state Theorem 3 we
need a definition.

DeriniTioN.  If f and g are nonnegative functions on a group G, the function
f#g is defined by

f#g(x)=sup{f(y)g(x —y): y € G}.

Recall that for p €[1,), |||, denotes the norm of a suitable function f in
L?(m).

TueorReM 3. (a) If f and g are continuous nonnegative functions on C
(regarded as functions on T supported on C), then

(10) ”f“L“(A)”8||L“(A>§ If#glh.
(b) If f is as in (a) and g € C;, then

(11) HfllumllglluméHf#gfln-
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REMARK. It does not seem possible to deduce an inequality like (10) (or (11))
from (8) (or (9)) in a manner similar to the proof that (a) implies (c) in Theorem
1.

ProOF OF (a). For J=1,2,...let G, =G(3')={0,1,...,3’ — 1} and let m, be
normalized counting measure on G,. Let C, = {2/ c,3’ ¢; =0,2}, and let A; be
normalized counting measure on C, The proof is similar to the proof of
Theorem 2 after (5) was established. In particular, the crucial point is proving,
for J =1,2,..., the inequality

(12) Il anlglorans | f#gdm

for nonnegative f and g on G, with support in C;. Given (12) a limit argument
(very like that in the conclusion of the proof of Theorem 2) yields (10). Thus only
(12) will be proved here. For J = 1 (12) is equivalent to the Lemma from [4]. So
assume that (12) holds for J —1 and let f, g be nonnegative functions supported
in C,. For j =0,1,2 let f, be defined on G,_, by f.(x)= f(j + 3x). Then f, and f,
are supported on C,_, and f, is zero. For an integer x, let ]x[ be the j €{0,1,2}
for which j = x(mod 3). Then

1

lvagloon= (55 RA ) (3ZIelban)

—

3
§§ sup [ fe e r-oll §1e-ctlle
x=0ceC,

by (12) for J =1. By (12) for J—1 this is not greater than

3 Z sup sup{f. (6) x-c(( — €): € € Cioi}dm, (%)

x=0c€Ct JGs-y

§% 2 sup{f(c +38)g(x +35 —(c +3&)):c € C,, ¢ € G iYdmy_i(%).

The last term is the right hand side of (12).

Proor OF (b). With notation as in the proof of (a) it is not surprising that the
heart of the proof is the inequality (for J =1,2,...)

(13) llfllu(mllgIIL”“-“(mnéLJ f#gdm,

for nonnegative f and g on G, with f supported on C,. The inductive step is
quite similar to the analogous part of the proof of (12). Thus we will give only the
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proof of (13) for J = 1. Let 8 = 1 — y. After cancelling the normalizing constants
for the measures and then scaling so that the left hand side of (13) is 1, (13) for
J =1 is the inequality

(14) 1 = max{aot, a;(1 — t)} + max{a.t, a,(1 — t)} + max{a.t, ao(1 — t)}
for 0=t =1 and a; =0 satisfying
al®+ay*+alf=1.

By continuity it is enough to prove (14) when each a; is strictly positive. The right
hand side of (14) defines a function h(¢) on [0,1] such that

hO)=h(1)=ao+ai+ a2 1.

Let t, = a:/(ayt+ a)), . = ax/(a: + a;), and £ = ao/(ao+ a.). Then ¢, is defined by
the equation aoty = a,(1 —t,), and ¢, and 1, arise similarly. It is enough to show
that A(t;)=1 for i = 1,2,3. Now h(t,)= 1 follows from the inequality

2 2
apa, + maX{a()az, a |} + maX{a(), a, az} = ag + a;

15 .
(15 whenever a; = O satisfy as*+ a\*+ ay? =1,

and h()=1, h(t;)=1 also follow from (15) by permuting the a;. Writing
b; = a\’® transforms (15) into

(bob,)® + [max{bob,, b}}* + [max{b3, b b:})* = b + b¢

(16) Whenever b() + b| + bz = 1, b,‘ = 0

Parametrizing this inequality by ¢ = b,, 8(1—c¢)=b,, (1-8)(1—-c¢)= b, and

cancelling a factor of (1—c)® show that it is enough to prove that
[6(1—8)(1 — )P +[max{(1 - 8)c,8*(1—c)})’ +

(17 [max{(1- 8Y(1— ¢, 5c}]f — (1— 6) — 8¢ =0

for0= ¢ =1,0= 8 =;. (The interval 0 = § =; suffices because (16) is symmetric
in by and b;.) The left hand side of (17) defines a function f;(c) on [0,1]. This
function is differentiable on (0,1) except at the points ¢, = ¢,(8) and c¢; = ¢,(8)
defined by the equations

(1_8)(:[ =52(1—C1), (1"6)2(1_‘C2)=6C2.
Since f;(1)=0 and

Edc_;fs(c)go on (0,1)~{ei, ¢},
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it is enough to show that
(18) (0)=0, 0s6=4,
(19) fs(c), fs(c:)Z0, 0=8=;.
To establish (18) put
g)=[A-0F +* +Q -ty —(1-1)° -1~
Then
g0)=0, g@)=3-27"-2"">0.
Also
g'(H=BA-BA-tf (A - )+ P71 - (A - 1)) -28°A — ) '¢*7"
Using the inequalities
1-f=gA-0*"', 1-(1-1f =pt1-1)"

one sees that this last expression is nonpositive. Thus g(t)=0 for 0=t =1/2.
Since f5(0)= g(8), (18) is true.
We turn to (19). Now

a=811-86+8%), c=(01-8Y/(1-6+6.
Since 0= 8 =1/2, it follows that 0=c¢, = ¢, =1. Also
1-c)=(1-6)c if and only if ¢, = c,
8c=(1-8)Y(1—-c) ifandonlyifc=c..

Using these facts one sees that f;(¢,)= fs(c,) and that this number will be
nonnegative if and only if

(20) [6(1—-8)Y P +[8°1-8))+(1-8)* -(1-8+8P[(1-8) +56°]=0.
Write k(8) for the left hand side of (20). Then
k(0)=k@)=0.

Thus it is enough to check that k"(1)=0 for 0 <t <3. Now k"(t) is naturally a
sum of several terms, and showing that k"(t) = 0 is simply a matter of pairing off
certain of these terms. This is elementary but tedious. Here are the details. We
can write
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k"(t) = ’i‘ k;(t)
where
ki(t)=B(B— 1" A=ty + (-4 )1 - )" +2B(2B — (1 - )*71°
= ki(D)+ ki) + ki),
kot)=B(B—1)(1— 1)1 + (=4’ * )1 -t " +2B2B - NP (1 -t
= k3(6)+ k() + ki(1),
ki(1)=3B(3B - (1 -1)*7,
ki(t)=—(1—t+ P [BB-1(A -ty +B(B-Dt°7],
k(t)= —2B(1—t+ P2t =1~ BA - 1))+ pt*7],
k()= —[BB~D(1—t+ PRt —17+28(1 -t + 2P ') [(1 - t)° +1*].

Recall that B8 = 1—v. Then the first bracketed factor in k«(t) can be written

B(l-—t+tZ)B"[2—y(4—t3_3t+])}.

This is positive for 0 = t =3, and so k«(¢) = 0 for those ¢ Of the remaining terms,
the k! (i =1,2; j =1,2,3) are negative while k;, k., and ks are positive on the
interval of interest. One can check that

ki(t)=

k()|
and that

kf()=2B%(1—t+ PP ' (1-201° ' S28°(1 — 1P (1 - 20)1° ' =

ki(t)|
for 0=t =;. Using the inequalities
Q-1+ - =p(1-0**7,  (A—t+0P (11—t =Bt(1—)*~
one sees that
ki(t)+ ki) + ka(6) = B*(1— B)[(1 — )PP 2+ 17 (1 — 1))
on [0,3]. Now, for these values of f,
B =By (-7 =3lki)], B (A1-BWP (A —ty '=|k3(1)].

Thus k"(£)=0 for 0 < ¢ <3 and the proof of Theorem 3 is complete.
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